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Abstract. Training example collection is of great importance for dis-
criminative trackers. Most existing algorithms use a sampling-and-labeling
strategy, and treat the training example collection as a task that is inde-
pendent of classifier learning. However, the examples collected directly
by sampling are not intended to be useful for classifier learning. Updat-
ing the classifier with these examples might introduce ambiguity to the
tracker. In this paper, we introduce an active example selection stage
between sampling and labeling, and propose a novel online object track-
ing algorithm which explicitly couples the objectives of semi-supervised
learning and example selection. Our method uses Laplacian Regularized
Least Squares (LapRLS) to learn a robust classifier that can sufficient-
ly exploit unlabeled data and preserve the local geometrical structure of
feature space. To ensure the high classification confidence of the classifier,
we propose an active example selection approach to automatically select
the most informative examples for LapRLS. Part of the selected exam-
ples that satisfy strict constraints are labeled to enhance the adaptivity
of our tracker, which actually provides robust supervisory information
to guide semi-supervised learning. With active example selection, we are
able to avoid the ambiguity introduced by an independent example col-
lection strategy, and to alleviate the drift problem caused by misaligned
examples. Comparison with the state-of-the-art trackers on the compre-
hensive benchmark demonstrates that our tracking algorithm is more
effective and accurate.

1 Introduction

Object tracking aims to estimate the trajectory of an object automatically in
a video sequence. Although the task is easily fulfilled by human vision system,
designing a robust online tracker remains a very challenging problem due to
significant appearance variations caused by factors such as object deformation,
illumination change, occlusion, and background clutters.

Numerous tracking algorithms have been proposed to address appearance
variations, and most of them fall into two categories: generative methods and
discriminative methods. Generative methods represent an object in a partic-
ular feature space, and then find the best candidate with maximal matching
score. Some popular generative trackers include incremental visual tracking [1],
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Fig. 1. Overview of our tracker. LapRLS is used to learn a robust classifier which is able
to exploit both labeled and unlabeled data during tracking. An active example selection
stage is introduced between sampling and labeling, which couples the objectives of
semi-supervised learning and example selection. The figure is best viewed in color.

visual tracking decomposition [2], sparse representation based tracking [3–7],
and least soft-threshold squares tracking [8]. Discriminative methods cast track-
ing as a binary classification problem that distinguishes the object from the
background [9–13]. Benefiting from the explicit consideration of background in-
formation, discriminative trackers usually are more robust against appearance
variations under complex environments. In this paper, we focus on learning an
online classifier which is able to capture appearance changes adaptively for object
tracking.

The performance of discriminative trackers largely depends on the training
examples used for classifier learning. Existing algorithms often collect training
examples via a two-stage strategy [9]: sampling and labeling. The sampling pro-
cess generates a set of examples around the current tracking result, and the
labeling process estimates the labels of these examples using heuristic approach
that depends on the current tracking result (e.g., examples with small distance
to the current track are labeled as positive, and examples far away from the
current track are negative).

This widely used example collection strategy raises several issues. Firstly,
the objective of the sampling process may not be consistent with the objec-
tive for the classifier, which makes the example collection strategy independent
of classifier learning. The examples collected directly by sampling are neither
necessarily informative nor intended to be useful for the classifier learning, and
might introduce ambiguity to the tracker. Secondly, assigning labels estimated
by the current tracking result to unlabeled examples may easily cause drift [14,
15, 9]. Slight inaccuracy of tracking results can lead to incorrectly labeled ex-
amples, and consequently degrades the classifier. State-of-the-art discriminative
trackers mainly focus on learning a classifier that is robust to poorly labeled
examples (e.g., semi-supervised learning [14, 16–18], P-N learning [19], multiple
instance learning [15] and self-paced learning [20]). However, the first issue is
rarely mentioned in the literature of object tracking.
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In this paper, we propose an online object tracking algorithm which explic-
itly couples the objectives of semi-supervised learning and example selection.
The overview of our tracker is shown in Fig. 1. We use a manifold regular-
ized semi-supervised learning method, i.e., Laplacian Regularized Least Squares
(LapRLS) [21], to learn a robust classifier for object tracking. We show that it
is crucial to exploit the abundant unlabeled data which can be easily collected
during tracking to improve the classifier and alleviate the drift problem caused
by label noisy. To avoid the ambiguity introduced by an independent example
collection strategy, an active example selection stage is introduced between sam-
pling and labeling to select the examples that are useful for LapRLS. The active
example selection approach is designed to maximize the classification confidence
of the classifier using the formalism of active learning [22, 23], thus guarantees
the consistency between classifier learning and example selection in a principled
manner. Our experiments suggest that coupling semi-supervised learning and
example selection leads to significant improvement on tracking performance. To
make the classifier more adaptive to appearance changes, part of the selected
examples that satisfy strict constraints are labeled, and the rest are considered
as unlabeled data. According to the stability-plasticity dilemma [24], the addi-
tional labels provide reliable supervisory information to guide semi-supervised
learning during tracking, and hence increases the plasticity of the tracker, which
is validated in our experiments.

Semi-supervised tracking: Semi-supervised approaches have been previ-
ously used in tracking. Grabner et al. [14] proposed an online semi-supervised
boosting tracker to avoid self-learning as only the examples in the first frame
are considered as labeled. Saffari et al. [16] proposed a multi-view boosting al-
gorithm which considers the given priors as a regularization component over the
unlabeled data, and validate its robustness for object tracking. Kalal et al. [19]
presented a P-N learning algorithm to bootstrap a prior classifier by iteratively
labeling unlabeled examples via structural constraints. Gao et al. [18] employed
the cluster assumption to exploit unlabeled data to encode most of the discrim-
inant information of their tensor representation, and showed great improvement
on tracking performance.

The methods mentioned above actually determine the “pseudo-label” of the
unlabeled data, and do not discover the intrinsic geometrical structure of the fea-
ture space. In contrast, the LapRLS algorithm employed in our algorithm learns
a classifier that predicts similar labels for similar data points by constructing
a data adjacency graph. We show that it is crucial to consider the similarity
in terms of label prediction during tracking. Bai and Tang [17] introduced a
similar algorithm, i.e., Laplacian ranking SVM, for object tracking. However,
they adopt a handcrafted example collection strategy to obtain the labeled and
unlabeled data, which limits the performance of their tracking method.

Active learning: Active learning, also referred to as experimental design
in statistics, aims to determine which unlabeled examples would be the most
informative (i.e., improve the classifier the most if they were labeled and used
as training data) [22, 23], and has been well applied in text categorization [25]
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and image retrieval [26, 27]. In this work, we propose an active example selection
approach to couple semi-supervised learning and example selection by using the
framework of active learning, in which the task is to select the examples that
improve the prediction accuracy of LapRLS the most.

We show that the active example selection introduces several advantages
for object tracking over existing methods. Firstly, it guarantees the consistency
between classifier learning and example collection in a principled way. That
is, the selected examples are meaningful for LapRLS, which can improve the
classification performance. Secondly, the active example selection tends to choose
the representative examples, which reduces the amount of training data without
performance loss. Thirdly, assigning labels to the selected examples alleviates the
drift problem caused by label noise. According to the theory of active learning,
the examples, that minimize the predictive variance when they are used for
training, will be selected. Thus misaligned examples are intended to be rejected
by the active example selection.

2 The Proposed Tracking Algorithm

Our tracker operates by alternately performing two stages: classifier learning
with LapRLS, and training example collection with active example selection.
After describing these two stages in Sec. 2.1 and Sec. 2.2, respectively, we for-
mulate object tracking in a Bayesian inference framework and summarize our
tracking algorithm in Sec. 2.3.

2.1 Classifier Learning with LapRLS

Given a set of l labeled examples {(xi, yi)}li=1, and a set of u unlabeled examples

{xi}l+u
i=l+1, the LapRLS algorithm seeks for a real valued function f : X → R by

solving the following optimization problem [21]:

f∗ = arg min
f∈HK

l∑
i=1

(yi − f(xi))
2 + λ1‖f‖2K +

λ2
2

l+u∑
i,j=1

(f(xi)− f(xj))
2Wij , (1)

where HK is a Reproducing Kernel Hilbert Space (RKHS) which is associated
with a positive definite Mercer kernel K : X ×X → R, ‖ · ‖K is the norm defined
in HK , and W is a (l+u)× (l+u) similarity matrix with entries Wij indicating
the adjacency weights between data points xi and xj . The last term in Eq.(1)
is an approximated manifold regularizer that preserves the local geometrical
structure represented by a weighted adjacency graph with similarity matrix W .
It actually respects a smoothness assumption, that is, data points which are
closed to each other in a high-density region should share similar measurements
(or labels) given by trained function. According to the spectral graph theory,
this regularized term can be rewritten as

1

2

l+u∑
i,j=1

(f(xi)− f(xj))
2Wij = f>Lf , (2)
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where f = [f(x1), f(x2), . . . , f(xl+u)]>, and L is the graph Laplacian given by

L = D−W . Here, D is a diagonal matrix defined as Dii =
∑l+u

j=1Wij . We adopt
the local scaling method [28] to define the similarity matrix,

Wij =

 exp

(
−‖xi − xj‖

2
2

σiσj

)
, if i ∈ N j

k or j ∈ N i
k,

0, otherwise,

(3)

where N i
k indicates the index set of the k nearest neighbors of xi in {xi}l+u

i=l ,

σi = ‖xi − x(k)i ‖2, and x
(k)
i is the k-th nearest neighbor of xi in {xi}l+u

i=l .
The Representer Theorem (see details in [21]) shows that the solution of

Eq.(1) is an expansion of kernel functions over both labeled and unlabeled data,

f∗(x) =

l+u∑
i=1

ω∗iK(x, xi). (4)

By substituting this form into Eq.(1), we get a convex differentiable objective
function of the (l + u)-dimensional vector ω = [ω1, . . . , ωl+u]>,

ω∗ = arg min
ω∈Rl+u

‖ỹ − ΛKω‖2 + λ1ω
>Kω + λ2ω

>KLKω, (5)

where K is the (l + u) × (l + u) Gram matrix with entries Kij = K(xi, xj), ỹ
is the augmented label vector given by ỹ = [y1, . . . , yl, 0, . . . , 0]>, and Λ is an
(l+u)× (l+u) diagonal matrix with the first l diagonal entries being 1 and the
rest 0, i.e., Λ = diag(1, . . . , 1, 0, . . . , 0).

The solution of Eq.(5) can be acquired by setting the gradient w.r.t ω to
zero,

ω∗ = (ΛK + λ1I + λ2LK)−1ỹ, (6)

where I is an (l+u)× (l+u) identity matrix. Obviously, the prediction function
can be efficiently obtained by solving a single system of linear equations described
in Eq.(6), and then the predicted label of a test data x is given by Eq.(4).

2.2 Training Example Collection with Active Example Selection

Given the object location at the current frame, a large set of unlabeled exam-
ples is generated by random sampling around the object location, denoted as

P = {pi}
Np

i=1, where Np is the number of examples. Existing tracking algorithms
directly employ a labeling process on this example set, and ignore the correla-
tion between example collection and classifier learning. In this work, we propose
an active example selection approach using the formulism of active learning to
automatically select the most informative examples among P for LapRLS.

Now we consider the example selection problem from the perspective of active
learning. Given the candidate set V = {vi}ni=1, the task is to find a set of
examples Z = {zi}mi=1 that together are maximally informative [22]. Suppose
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that we can observe the labels of zi by a measurement process ci = f(zi) + εi,
where ci is the observed label of example zi, f is the underlying label prediction
function and εi ∼ N (0, σ2) is measurement noise. Using Z as labeled data and

the rest in V as unlabeled data, the estimate of f , denoted as f̂ , can be obtained
by using LapRLS,

f̂(x) = Kx,V ω̂, (7)

ω̂ = (KV ZKZV + λ1K + λ2KLK)−1KV Zc, (8)

where (Kx,V )1j = K(x, vj), (KV Z)ij = K(vi, zj), (KZV )ij = K(zi, vj), (K)ij =
K(vi, vj), and c = [c1, . . . , cm]>. Note that Eq.(7) and Eq.(8) can be easily
derived from Eq.(4) and Eq.(6), respectively.

Denote H = KV ZKZV + λ1K + λ2KLK and ∆ = λ1K + λ2KLK, the
covariance matrix of ω̂ can be expressed as

Cov(ω̂) = Cov(H−1KV Zc)

= H−1KV ZCov(c)KZVH
−1

= σ2(H−1 −H−1∆H−1),

(9)

where the third equation uses the assumption Cov(c) = σ2I. The covariance ma-
trix Cov(ω̂) characterizes the confidence of the estimation, or the informativeness
of the selected examples [23]. Different criteria can be applied to the covariance
matrix to obtain different active learning algorithms for LapRLS. He [27] used
the D-optimality criterion that minimizes the determinant of Cov(ω̂) to design
an active learning method for image retrieval. However, the criteria does not
directly consider the quality of predictions on test data.

Inspired by the work in [25], we design the objective of our active example
selection approach in a transductive setting. Let fV = [f(v1), . . . , f(vn)]> be the
true labels of all examples in V given by the underlying label prediction function
f , and f̂V = [f̂(v1), . . . , f̂(vn)]> be the predictions on V given by the estimator

f̂ , then the covariance matrix of the predictive error fV − f̂V is given by

Cov(fV − f̂V ) = KCov(ω̂)K

= σ2K(H−1 −H−1∆H−1)K.
(10)

We aim to select m examples Z from V such that the average predictive variance
1
nTr(Cov(fV − f̂V )) is minimized, i.e., a high confidence of predictions on V is
ensured. Since the regularization parameters (i.e., λ1 and λ2) are usually very
small, we have

Tr(K(H−1 −H−1∆H−1)K) ≈ Tr(KH−1K). (11)

Therefore, the formulation of our active example selection approach can be ex-
pressed as

max
Z

Tr
(
K(KV ZKZV + λ1K + λ2KLK)−1K

)
s.t. Z ⊂ V, |Z| = m

. (12)
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Algorithm 1 Sequential Active Example Selection

1: Initialize: M = K(λ1K + λ2KLK)−1K; Z′; Z = ∅
2: M ←M −MV Z′(MZ′Z′ + I)−1MZ′V

3: while |Z| < m do
4: select z according to Eq.(15);
5: Z′ = Z′ ∪ {z}, Z = Z ∪ {z};
6: M ←M −MV,zMz,V /(1 +Mz,z);
7: end while
8: return Z

Note that the example selection itself is independent of the observed labels c.
Let ∆−1 be the Moore-Penrose inverse of ∆, we can get the following equa-

tions by applying Woodbury matrix identity,

KH−1K = K(KV ZKZV +∆)−1K

= K∆−1K − K∆−1KV Z(KZV∆
−1KV Z + I)−1KZV∆

−1K,
(13)

where I is an m × m identity matrix. We define a new kernel matrix M =
K∆−1K, and rewrite Eq.(12) into a much simple form,

max
Z

Tr
(
MV Z(MZZ + I)−1MZV

)
s.t. Z ⊂ V, |Z| = m

(14)

The problem of Eq.(14) is actually a combinatorial optimization problem
which is NP-hard. We present a sequential greedy optimization approach to
solve Eq.(14). The rational is two-fold. First, a sequential assumption greatly
simplifies the problem and ensures the efficiency of our tracker. Second, it is
straightforward to incorporate the current set of labeled examples in an incre-
mental way. Considering the current set of labeled examples during example
selection ensures the representativeness of the selected examples.

The sequential approach selects just one example in each iteration until m
examples have been selected. Denote the selected examples in the previous iter-
ations as Z ′, the task of each iteration is to seek for a new example z ∈ V − Z ′
by solving Eq.(14). Denote ∆̃ = KV Z′KZ′V +∆, Eq.(14) can be rewritten into
a canonical form,

max
z
‖M̃V,z‖2/(1 + M̃z,z)

s.t. z ∈ V − Z ′
(15)

where M̃ = K∆̃−1K = M −MV Z′(MZ′Z′ + I)−1MZ′V , M̃V,z and M̃z,z are z’s

column and diagonal entry in M̃ , respectively. Eq.(15) can be easily solved by
directly selecting z ∈ V − Z ′ with the highest ‖M̃V,z‖2/(1 + M̃z,z).

Starting from a set Z ′ and M = K(λ1K + λ2KLK)−1K, m most informa-
tive examples can be selected sequentially. We summarize our active example
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selection approach in Algorithm 1. Note that there is no need for matrix inverse
at each iterative step.

Recall that we employ active example selection to automatically select infor-
mative examples from the set P generated by sampling. In addition, we intend
to incorporate the current set of labeled examples into the example selection
problem to ensures the representativeness of the selected examples. Hence, we
set Z ′ as the current set of labeled examples and construct the candidate set as
V = Z ′ ∪ P before we perform Algorithm 1 to select useful examples.

2.3 Bayesian inference framework

In this paper, we cast object tracking as a Bayesian inference task with a hidden
Markov model. Given the observed image set O1:t = {o1, · · · ,ot} up to time t,
the optimal state st of an object can be estimated by Bayesian theorem,

p
(
st
∣∣O1:t

)
∝ p(ot|st)

∫
p
(
st|st−1

)
p
(
st−1

∣∣O1:t−1
)
dst−1, (16)

where p(st|st−1) is the motion model that predicts the next state st from the
previous state st−1, and p(ot|st) is the observation model that estimates the
likelihood of the observation ot at the state st belonging to the object class. In
practice, a particle filter [29] is used to approximate the posterior p(st

∣∣O1:t) by

a finite set of Ns samples {sit}
Ns
i=1 with importance weights {πi

t}
Ns
i=1. The samples

sit are drawn from the motion model and the corresponding weights are given
by the observation likelihood p(ot|sit).

Motion model: We apply the affine transformation with six parameters
to model the object motion. Formally, st = (xt, yt, σt, αt, θt, φt) where (xt, yt)
denote translation, σt, αt, θt, φt are scale, aspect ratio, rotation angle, and skew
direction at time t, respectively. The motion model is formulated as Brownian
motion, i.e., p(st|st−1) = N (st; st−1,Σ), where Σ is a diagonal covariance
matrix which indicates the variances of affine parameters.

Observation model: For the tracking at time t, we first generateNs samples
{sit}

Ns
i=1 from the previous state st−1. Then the corresponding image regions

can be cropped from the observed image ot by applying affine transformations
using sit as parameters. After feature extraction, we can obtain a set of test
data, denoted as {bit}

Ns
i=1. Integrating this newly test data into the current set

of unlabeled examples, denoted as U , together with the current set of labeled
examples, denoted as L, an adaptive prediction function ft can be learned with
LapRLS. The observation likelihood of the sample sit is given by

p
(
ot|sit

)
∝ exp

(
− ‖1− ft(bit)‖2

)
. (17)

Here we assume that positive examples are labeled with 1, and negative exam-
ples are labeled with 0. At each time stamp, the sample with the maximum
observation likelihood is chosen as the tracking result.

Model update: Once the object is located, we sample a large set of unla-
beled examples P , and employ active example selection to select a set of infor-
mative examples Z. To make the trained classifier more adaptive to appearance
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changes, we assign labels to part of the set Z according to the following con-
straints: the distances between positive examples and the current track should
be smaller than a threshold τ , and negative examples should not overlap the
current track. The rest examples that do not satisfy the constraints are consid-
ered as unlabeled data. Then the informative examples Z are used to update
the current set of labeled examples L and the current set of unlabeled examples
U , where random replacement happens once the number of examples in L or U
reaches the maximum values |L| or |U |.

3 Experimental Results

We evaluate our tracker with 10 state-of-the-art methods on a recent bench-
mark [30], where each tracker is tested on 51 challenging videos. The state-
of-the-art trackers include TLD [19], MIL [15], VTD [2], Struck [9], SCM [4],
CT [10], SPT [12], LSST [8], RET [13] and ONNDL [6]. We use the source codes
publicly available on the benchmark (except that the source codes of SPT, LSST,
RET and ONNDL are provided by the authors) with the same initialization and
their default parameters. Since the trackers involve randomness, we run them 5
times and report the average result for each sequence.

3.1 Implementation Details

We normalize the object region to 32×32 pixels, and extract 9 overlapped 18×18
local patches within the region by sliding windows with 7 pixels as step length.
Each patch is represented as a 32-dimensional HOG feature [31], and these fea-
tures are grouped into a 288-dimensional feature vector. For LapRLS and active
example selection, we apply linear kernel and empirically set the regularization
parameters λ1 and λ2 to be 0.001 and 0.1, respectively. The parameter k in
Eq.(4) is empirically chosen as 7 according to [28]. In the first frame, 20 positive
examples, 80 negative examples and 300 unlabeled examples are used to initial-
ize the classifier. The example set capacity |L| = 200 and |U | = 600. Given the
object location at the current frame, Np = 1200 unlabeled examples are gen-
erated by random sampling and 20 informative examples are selected by active
example selection. We set the labeling constraint parameters τ to be 3 pixels.
For particle filter, the number of samples Ns = 600, and the state transition ma-
trix Σ = diag(8, 8, 0.01, 0, 0, 0). Note that the parameters are fixed throughout
the experiments in this section. Our tracker is implemented in MATLAB, which
runs at 2 fps on an Intel Core i7 3.5 GHz PC with 16 GB memory.

3.2 Quantitative Evaluation

We use the center location error as well as the overlap rate for quantitative
evaluations. Center location error is the per frame distance (in pixels) between
the center of the tracking result and that of ground truth. Overlap rate is defined

as area(RT∩RG)
area(RT∪RG) , where RT is the bounding box of tracking result and RG denotes
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Fig. 2. Overall performance of the competing trackers on 51 video sequences. The
precision plot and the success plot are used, and the performance score for each tracker
is shown in the legend.

the ground truth. We employ precision plot and success plot [30] to evaluate the
robustness of trackers, rather than directly using the average center location error
and the average overlap rate over all frames of one video sequence to indicate
the overall performance. The precision plot indicates the percentage of frames
whose estimated location is within the given threshold distance of the ground
truth, and the success plot shows the ratios of successful frames whose overlap
rate is larger than the given threshold.

The overall performance of the competing trackers on the 51 sequences is
illustrated by the precision plot and the success plot as shown in Fig. 2. For the
precision plot, the results at error threshold of 20 pixels are used for ranking,
while for the success plot we use area under curve (AUC) scores to summarize
and rank the trackers.

We can observe from Fig. 2 that both our tracker and the SCM, SPT and
Struck methods achieve good tracking performance. In the precision plot, our
tracker performs 8.3% better than the Struck, 10% better than the SPT, and
13.6% better than the SCM. In the success plot, our tracker performs 5% better
than the SCM, 5.8% better than the SPT, and 6.1% better than the Struck.
We also observe that the SCM method provides higher precision and success
rate when the error threshold is relatively small (e.g., 5 pixels in the precision
plot, and 80% in the success rate). It owes to the fact that the SCM method
exploits both holistic and local representation approaches based on sparse coding
to handle appearance variations.

We also utilize the attribute based performance analysis approach [30] to
demonstrate the robustness of our tracker. The video sequences used in the
benchmark are annotated with 11 attributes which can be considered as dif-
ferent factors that may affect the tracking performance. One sequence can be
annotated with several attributes. By putting the sequences that share a common
attribute into a subset, we can analyze the performance of trackers to handle a
specific challenging condition. Fig. 3 illustrates the success plots of the compet-
ing trackers for these 11 attributes (arranged in ascending order of the number
of video sequences in each subset), and the precision plots can be found in the
supplementary material. As indicated in Fig. 3, our method provides the best
tracking performance in 7 of the 11 video subsets and also performs well in the
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Fig. 3. Attribute based performance analysis using success plot. The number of video
sequences in each subset is shown in the title. Best viewed on high-resolution display.

other 4 subsets, which demonstrates that the proposed algorithm is robust to
appearance variations caused by a set of factors.

Overall, our tracker performs favorably against the state-of-the-art algo-
rithms in terms of location accuracy and robustness. It can be attribute to the
facts that LapRLS is effective for learning a robust classifier for object track-
ing, and that the proposed training example collection strategy which includes
active example selection and the conservative labeling stage makes the classifier
robust and adaptive to appearance changes. Our experimental results validate
these claims in the following sections.

3.3 Diagnostic Analysis

As previously mentioned, our tracking method chooses the most informative
examples for classifier learning via active example selection, leading to a signifi-
cant improvement on tracking performance. In addition, we assign labels to part
of the selected examples that satisfy strict constraints, which can increase the
adaptivity of the classifier. To demonstrate the effectiveness of the active ex-
ample selection approach and the conservative labeling strategy, we build three
baseline algorithms to do validation and analyze various aspects of our method.

We begin with a “naive” tracker based on a classifier learned with LapRLS,
denoted as BaseLine1. The BaseLine1 only exploits the labeled examples from
the first frame, and collects unlabeled examples using random sampling. We add
the active example selection stage after the sampling process to select informa-
tive examples for LapRLS, resulting in another baseline, denoted as BaseLine2.
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Fig. 4. Diagnostic Analysis. The overall performance of three baseline algorithms and
our method on the 51 video sequences is presented for comparison in terms of precision
and success rate.

Both the BaseLine1 and the BaseLine2 are stable versions, since no supervisory
information is added during tracking, i.e., the training examples are collected
without the labeling stage. We get the last baseline by allowing the BaseLine1 to
assign labels to part of the unlabeled examples that satisfy the strict constraints
described in Sec. 2.3, denoted as BaseLine3. Note that adding supervisory infor-
mation to the BaseLine2 leads to the proposed method.

The overall tracking performance of these baseline algorithms and our method
is presented in Fig. 4. Surprisingly, even without additional example selection
and labeling process, the BaseLine1 produces good performance in terms of pre-
cision and robustness, outperforming the CT, MIL, LSST and TLD trackers
and being comparable to the VTD. It demonstrates the effectiveness of LapRLS
which can sufficiently exploit unlabeled data and preserve the local geometrical
structure of feature space. The performance of our method and the Baseline3
is obviously better than the BaseLine1 and the BaseLine2, which demonstrates
that the additional supervisory information is significant for object tracking. The
conservative labeling strategy used in our tracking method achieves a suitable
trade-off between stability and plasticity in terms of capturing appearance vari-
ations. The performance of our method is significantly better than BaseLine3,
and the BaseLine2 outperforms the BaseLine1. It validates the effectiveness of se-
lecting informative examples for classifier learning. The active example selection
guarantees the consistency between example collection and classifier learning,
and thus improves the tracking performance. Furthermore, assigning labels to
examples selected by active example selection alleviates the drift problem caused
by label noise, since misaligned examples will be rejected to ensure the high pre-
diction confidence of the classifier.

3.4 Qualitative Evaluation

We present a qualitative evaluation of the tracking results in this section. 12
representative sequences are chose from the subsets of four dominant attributes,
i.e., occlusion, illumination variations, background clutter and deformation. Sev-
eral screenshots of the tracking results on these 12 sequences are illustrated in
Fig. 5. We mainly discuss the four dominant challenges in the following.
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Occlusion is one of the most general yet crucial problems in object tracking,
as shown in Fig. 5(a). In the David3 sequence, the person suffers from partial
occlusion as well as drastic pose variations (e.g., #249). Only the LSST, RET,
ONNDL and our method success in this sequence. In the Jogging2 sequence,
there is a short-term complete occlusion for the tracked object (e.g., #60). The
TLD, SCM, ONNDL and our method are able to reacquire the object and provide
satisfactory tracks. Note that the TLD method employs a detector to reacquire
the object and the SCM and ONNDL trackers involve occlusion resolving scheme
based on sparse representation. In the Woman sequence, only the Struck, SPT
and our method are able to track the object when the long-term occlusion hap-
pens (e.g., #134). Most of the trackers lock onto a wrong object with similar
appearances after occlusion. Our method selects informative examples for clas-
sifier learning via active example selection, and thus alleviates the drift problem
caused by misaligned examples in handling occlusions.

The tracked objects in the David1, Singer2 and Trellis sequences undergo
significant illumination changes and pose variations, as shown in Fig. 5(b). Most
of the trackers can not handle the appearance variations caused by illumination
changes together with pose variations (e.g., David1 #161, Singer2 #185 and
Trellis #355), whereas the VTD and SCM methods perform better. In contrast,
our method achieve stable performance in the entire sequences. In the Singer2
sequence, the contrast between the foreground and the background is very low.
Our method tracks the object accurately, but most trackers drift away at the
beginning of the sequence (e.g., #41). The robustness of our tracker against
illumination variations comes from the fact that the adopted HOG feature has
been proved to be invariant to illumination changes.

In the Football, Lemming and Subway sequences, the objects appear in back-
ground clutters, as shown in Fig. 5(c). Most trackers drift away from the objects
as there exists the interference of similar appearances in the background (e.g.,
Football #312, Lemming #545, Subway #46). Our method learns an online clas-
sifier that takes the background information into account, and thus can achieve
robust performance under complex environments.

In the Basketball, Bolt and Skating1 sequences, the object appearances change
drastically due to significant non-rigid object deformation, such as viewpoint
changes and pose variations, as shown in Fig. 5(d). We can see that only our
method tracks the objects successfully in all these three sequences. In the Basket-
ball sequence, the person changes his pose frequently and often partially occluded
by other players. Only the VTD and our method can keep track all the time. In
the Bolt sequences, there exist significant pose variations of the person, together
with the viewpoint change. The trackers except the ONNDL and our method
fail when the viewpoint start to change (e.g., #107). In the Skating1 sequence,
all of the methods except our tracker gradually drift away when there is severe
occlusion and large scale change of the object (e.g., #178). We show that our
method adaptively copes with appearance variations through online update with
the selected informative examples, thus provides more accurate and consistent
tracking results.
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(a) Tracking results on sequence David3, Jogging2 and Woman with occlusions.

(b) Tracking results on sequence David, Singer2 and Trellis with illumination changes.

(c) Tracking results on sequence Football, Lemming and Subway with clustered background.

(d) Tracking results on sequence Basketball, Bolt and Skating1 with object deformation.
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Fig. 5. Sample tracking results of the competing trackers on 12 representative video
sequences.

4 Conclusion

In this paper, we have presented a novel online object tracking algorithm that
explicitly couples the objectives of semi-supervised learning and example selec-
tion in a principled manner. We have shown that selecting informative examples
for classifier learning results in more robust tracking, and have proposed an ac-
tive example selection approach using the formulism of active learning. We have
also shown that assigning labels to part of the selected examples achieves a suit-
able trade-off between stability and plasticity in terms of capturing appearance
variations. Both quantitative and qualitative evaluations compared with state-
of-the-art trackers on a comprehensive benchmark demonstrate the effectiveness
and robustness of our tracker.
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